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ABSTRACT: This study was designed to elucidate the biological variation in expression of many metabolites due to
environment, genotype, or both, and to investigate the potential utility of metabolomics to supplement compositional analysis for
substantial equivalence assessments of genetically modified (GM) crops. A total of 654 grain and 695 forage samples from 50
genetically diverse non-GM DuPont Pioneer maize hybrids grown at six locations in the U.S. and Canada were analyzed by
coupled gas chromatography time-of-flight-mass spectrometry (GC/TOF-MS). A total of 156 and 185 metabolites were
measured in grain and forage samples, respectively. Univariate and multivariate statistical analyses were employed extensively to
compare and correlate the metabolite profiles. We show that the environment had far more impact on the forage metabolome
compared to the grain metabolome, and the environment affected up to 50% of the metabolites compared to less than 2% by the
genetic background. The findings from this study demonstrate that the combination of GC/TOF-MS metabolomics and
comprehensive multivariate statistical analysis is a powerful approach to identify the sources of natural variation contributed by
the environment and genotype.
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■ INTRODUCTION

The world’s population reached 7 billion last year and is pro-
jected to grow to over 9 billion by 2050.1 Genetically modified
crops are expected to play a critical role in meeting the
unprecedented demand for food around the world. The
number of hectares cultivated with GM crops has increased
sharply over the past decade.2 GM crops have been
documented to be often higher yielding, more nutritious,
disease resistant, and drought tolerant in comparison to con-
ventional crops.3 However, introduction of GM crops has
generated debate and controversy over their safety to humans
and livestock and their long-term impact to the environ-
ment.4−6 As a result, the Organization of Economic Coopera-
tion and Development (OECD) introduced the concept of
substantial equivalence, which has come to be accepted by
various worldwide agencies as a means to evaluate GM crops.7,8

This protocol, however, has not satisfied all concerns regarding
the safety of GM crops.9 Some studies suggested that
metabolomics would be more appropriate to detect composi-
tional changes since many analytes can be measured and
unintended changes could therefore be more easily seen.
Metabolomics and metabolite profiling involve qualitative or

semiquantitative detection of a high number of metabolites that
are substrates, intermediates, and end products of cellular
activities.10−12 Metabolomics has been applied to a wide range
of agricultural applications such as crop protection, plant bio-
technology, and plant breeding.13−19 A number of studies have
attempted to use untargeted metabolomics or targeted
metabolite profiling to access substantial equivalence and possible
extrapolation for safety assessments of GM crops.20−22

The potential utility of metabolomics for these purposes is
due to the fact that metabolite concentrations are often
altered more significantly compared to gene expression or
protein levels, making detection of metabolites a sensitive
and responsive measure of biological status. Metabolites are
also “closer” to the end product of biological activities, thus
presumably more reflective of a plant’s phenotype, which is
of prime value in substantial equivalence and safety assess-
ments of new GM varieties.
There are several studies that have been conducted to

investigate the effect of the environment and genotype on
biochemical composition of maize grain.23−29 Metabolite
profiling has also been used to evaluate the effect of the
environment and genetic modification in other crops, such as
rice, potatoes, tomatoes, and wheat, among others.20,30−34

These studies collectively underscore the need to understand
and document the natural variation of metabolism due to the
environment and genotype. Understanding the effect of the
environment on genetically diverse non-GM crops is required
before comparisons can be made with counterpart GM lines.
However, to the best of our knowledge, no study to date has
compared extensive metabolite profiles of both grain (kernels)
and forage (leaves) from genetically diverse non-GM
commercial maize lines from geographically diverse locations
due to different genotypes, environments, or both.
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This study was designed to document the biological variation
of many metabolites influenced by the environment, genotype,
or both and to investigate the potential of metabolomics to
support substantial equivalence assessments for GM maize. We
applied a combination of gas chromatography coupled to time-
of-flight-mass spectrometry (GC/TOF-MS), followed by uni-
variate and comprehensive multivariate statistical methods prin-
cipal component analysis (PCA), partial least-squares discrimi-
nant analysis (PLSDA), and hierarchical cluster analysis (HCA)
to compare the metabolomic profiles of samples collected from
grain and forage from fifty genetically diverse non-GM maize
hybrids grown at six locations scattered throughout the maize-
growing regions of North America.

■ MATERIAL AND METHODS
Plant Materials. Fifty genetically diverse non-GM maize hybrids

from DuPont Pioneer were planted at six different locations. Five of
the locations were in the U.S. (Illinois, Kansas, Minnesota, Nebraska,
and Texas) and the sixth location was in Ontario, Canada. Planting
locations for the hybrids were selected based on days to maturity such
that each location had 20 unique genotypes, as shown in Table S1 of
the Supporting Information. At every location, each genotype was
planted in three randomized blocks (3 blocks and 2 replicates per
block), as shown in Table S2 of the Supporting Information. Each
block was separated by an alley at least 36 in. wide and surrounded on
each end by two-row borders. Agronomic practices such as irrigation,
fertilization, herbicide, and pesticide applications were applied

uniformly across locations and were consistent with the normally
acceptable practices for maize production.

Two forage samples were collected after flowering from three plants
from each genotype and block and immediately placed on dry ice.
Each forage sample represents the aerial portion of three entire plants.
Collected frozen samples were stored temporally at less than or equal
to −10 °C. Each grain sample was collected at physiological maturity
from five hand pollinated ears from each genotype and block. For each
sample, the resulting grain from five shelled ears were pooled and
immediately placed on dry ice until transferred to a less than or equal
to −10 °C freezer for temporary storage. The same harvesting
protocol was adopted in all locations. Samples were shipped frozen
to the DuPont Pioneer Regulatory processing laboratory in Ankeny,
Iowa where they were lyophilized and ground. Lyophilized forage and
grain samples were then shipped on dry ice to the DuPont Pioneer
metabolomics laboratory in Johnston, Iowa, where they were stored at
−80 °C until analyzed. Part a of Table 1 summarizes the number of
samples obtained from each location.

Sample Preparation. For forage samples, metabolites were
extracted from lyophilized tissue with dry weights between 4.0 and
6.0 mg (5.1 mg mean). Metabolites were extracted from grain samples
with dry weights between 4.0 and 6.0 mg (5.0 mg mean). Five
hundred microliters of chloroform:methanol:water (2:5:2, v/v/v)
containing 0.015 mg ribitol internal standard were added to each
sample in a 1.1 mL polypropylene microtube containing two 5/32 in.
stainless steel ball bearings. Samples were homogenized in a 2000
Geno/Grinder ball mill (SPEX CertiPrep, Inc., Metuchen, NJ) at a
setting of 1650 rpm for 1 min and then rotated on an end-over-end
mixer (Glas-Col, LLC, Terre Haute, IN) at 4 °C for 30 min. Samples
were then centrifuged at 1454g at 4 °C for 15 min. Next, 300 μL

Table 1. Sample Information Summary Based On (a) Location and (b) GC Batch/Sequence

(a)

forage grain

location No. of samples reference QC No. of samples reference QC

Illinois 120 15 12 117 15 12
Kansas 118 13 8 113 15 12
Minnesota 112 15 12 119 15 12
Nebraska 118 14 12 118 15 12
Ontario 66 12 10 108 15 12
Texas 120 15 11 120 15 12
Total 654 84 65 695 90 72

(b)

forage grain

batch locations No. of samples reference QC No. of samples reference QC

1 Illinois 40 5 4 39 5 4
2 Illinois 40 5 4 40 5 4
3 Illinois 40 5 4 38 5 4
4 Kansas 40 4 4 39 5 4
5 Kansas 40 5 0 39 5 4
6 Kansas 38 4 4 35 5 4
7 Minnesota 38 5 4 40 5 4
8 Minnesota 36 5 4 39 5 4
9 Minnesota 38 5 4 40 5 4
10 Nebraska 40 5 4 40 5 4
11 Nebraska 38 4 4 39 5 4
12 Nebraska 40 5 4 39 5 4
13 Ontario 26 5 4 36 5 4
14 Ontario 26 5 4 35 5 4
15 Ontario 14 2 2 37 5 4
16 Texas 40 5 3 40 5 4
17 Texas 40 5 4 40 5 4
18 Texas 40 5 4 40 5 4
Total All Sites 654 84 65 695 90 72
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aliquots were transferred to 1.8 mL high recovery autosampler vials
and subsequently evaporated to dryness in a speed vac (Thermo
Scientific, Waltham, MA). The dried residues were redissolved in
50 μL of 20 mg mL−1 methoxyamine hydrochloride in pyridine,
capped, and agitated with a vortex mixer for approximately two
seconds. Samples were then incubated in an orbital shaker at 30 °C for
90 min to form methoxyamine derivatives. Eighty microliters of
N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) was added
to each sample to form trimethylsilyl derivatives. To minimize sample
variability as a result of different derivatization states, a CTC Combi
PAL autosampler (Gerstel Inc., Linthicum, MD) controlled by
Maestro software (Gerstel) was used to deliver the MSTFA through
a diluter to each sample 30 min prior to injection.
To further minimize analytical errors and system bias, forage and

grain samples were rearranged into 18 batches prior to sample
preparation. For each batch, four quality control (QC) samples were
prepared by pooling aliquots from each individual sample. The QC
samples were used to minimize and correct within batch variation.
In addition, we also ran five reference samples which were prepared
from the same grain or forage material in every batch. The reference
materials consisted of grain and forage samples originating from
Illinois. Reference samples were used to minimize and correct across
batch variability. A detailed summary of samples run in every batch is
shown in part b of Table 1.
Instrumental Analysis. The derivatized samples were first

separated by gas chromatography on a Restek 20m × 0.18 mm ×
0.18 μm film thickness Rtx-5Sil MS column. One microliter
injections were made with a 1:30 split ratio using the Gerstel
autosampler. The Agilent 7890A gas chromatograph (Agilent, Palo
Alto, CA) was programmed for an initial temperature of 60 °C for
0.5 min and then increased to 350 °C at a rate of 36 °C per minute,
where it was held for 1 min before being cooled rapidly to 60 °C
and held there for 2.5 min in preparation for the next run. The
injector and transfer line temperature were set at 270 and 250 °C,
respectively, and the source temperature was set at 200 °C. Helium
was used as the carrier gas with a constant flow rate of 0.8 mL min−1

maintained by an electronic pressure control. Data acquisition was
performed on a LECO Pegasus HT time-of-flight-mass spectrom-
eter (Leco Corp, St Joseph, MI) at an acquisition rate of 20 spectra
sec−1 in the mass range of 45 to 600 m/z. An electron beam of 70 eV
was used to generate spectra and the detector voltage was set at
1575 V. The instrument was autotuned for mass calibration using
PFTBA (perfluorotributylamine) prior to each gas chromatograph
sequence.
Data Pretreatment. Raw LECO GC/MS .peg data files were

converted into .netCDF (Andi) formats using the LECO ChromaTof
software version 4.41. For each .netCDF file, retention times were
converted into retention indices using an in-house program. Data
preprocessing which consisted of chromatogram gridding in the m/z
value and retention index dimensions, chemical noise subtraction,
aligning the retention indices of each selected ion chromatogram, and
detecting nominal mass peaks was performed with Genedata Refiner
MS version 6.1 (Basel, Switzerland). The resulting matrix consisted
of intensities for each m/z value and retention index combination
for each sample. The aligned and denoised data matrix was then
transferred to Genedata Analyst version 2.2, where each intensity value
was normalized for both the ribitol internal standard signal and sample
dry weight.
The data matrix was then subjected to a data reduction step using

an in-house clustering program. During the data clustering process,
all peaks within the same retention index window (∼0.5 s) that
corresponded to the same compound were grouped into one cluster/
group based on the correlation between the individual intensity
profiles across all samples. Each cluster was represented by the most
abundant mass in that cluster/group. A total of 156 and 185
metabolites were identified from grain and forage samples,
respectively, down from 5026 and 8015 unclustered signatures
identified from peak detection in grain and forage samples,
respectively.

Univariate Analysis. The relative standard deviation (RSD), also
known as coefficient of variation (CV), for each metabolite was
calculated as a measure of the variance in grain and forage meta-
bolomics data due to different genotypes and environments. The mean
RSD for all metabolites in plants grown in every location was used to
evaluate the effect of the environment. The mean RSD for all
metabolites from each genotype using samples grown in each location
separately was used as a measure of the effect of genotypes on data
variance.

To further investigate the effect of environment and genotypes on
the metabolites, a paired student’s t test with a Bonferroni adjustment
was calculated for each metabolite cluster, and the number of
metabolites that were highly significantly altered (p values < 0.01)
were determined. To assess the effect of the environment, we cal-
culated and compared the p values of every metabolite from one
location to those from every other location; a total of 2046 (the
number of metabolites times the number of locations) statistical
comparisons were done at every location. To determine the number of
metabolites whose expression were altered due to different genotype,
we calculated and compared the p values of every metabolite in one
genotype to that in every other genotype at every location; a total of
64 600 (the number of metabolites times the number of different
genes combination) statistical comparisons were made.

Multivariate Analysis. Data matrix before and after clustering
were imported into Matlab version R2010b (Mathworks) installed
with the PLS toolbox version 6.0.1 (Eigenvector Research Inc.,
Wenatchee, WA) for modeling. For PCA and PLSDA, data were
normalized and autoscaled prior to modeling.35 An open source
software R statistical package (version 2.12.1) was used for hierarchical
cluster analysis to generate dendrograms and heat maps.35,36

■ RESULTS
Data Variability in Grain and Forage. To investigate the

data variability in grain and forage samples due to different
environment and genotypes, we first calculated and compared
mean RSD for all metabolites. To evaluate the effect of the
environment, we compared the mean RSD for the relative
amounts of all metabolites in grain and forage, using samples
grown at different locations (Table 2). The mean RSD for all

metabolites in grain samples was higher than that for forage
samples grown at the same location, with an exception of
Texas. Grain samples from Texas had a mean RSD of about
60%, compared to 68% for that from the other locations.
Furthermore, forage samples from Texas had a mean RSD of
61% compared to about 45% for the other locations. Apart
from Texas, we did not observe any significant differences
between the mean RSDs for all metabolites in grain or forage
samples from one location to another. To further evaluate the
data variability and measure the data reproducibility, we also
compared the mean RSDs for all metabolites using grain and
forage samples from each block (total of 3 blocks and 2
replicates per block) at every location. Mean RSDs for all
metabolites from each block were very similar for grain or

Table 2. Mean RSD for Relative Abundance of Metabolites
in Grain and Forage Samples from Different Locations

location grain forage

Illinois 69.12 43.26
Kansas 69.43 44.27
Minnesota 67.19 46.73
Nebraska 68.67 49.48
Ontario 66.38 44.07
Texas 59.96 61.29
ref samples 48.48 39.18
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forage samples grown at the same location (Table S3 of the
Supporting Information). The mean RSD for grain samples
from each block was higher than that for forage samples from
the same block at every location except Texas, consistent with
what we observed using all samples. Texas forage samples from
every block, especially block 2, had higher RSDs which
accounted for the highest RSD from this location (Table 2).
To investigate the effect of different genotypes on data

variability, we compared the data variability from grain and
forage samples with different genotypes. Table 3 shows the

mean RSD for the relative amounts of all the metabolites from
different genotypes using samples from all locations. Mean
RSDs for most of the genotypes were higher in grain samples
compared to forage samples, similar to what we observed when
we compared samples from different locations. To minimize
any confounding effect of the environment, we recalculated
the mean RSDs separately for different genotypes using
samples grown at every location (Table S4 of the Supporting
Information). Mean RSDs calculated from samples at any one
location were significantly lower than that generated using
samples from all locations. This result indicates that there was a
confounding effect from the environment. It is worth noting
that the mean RSD for most genotypes was very similar across
different locations, also indicating good reproducibility in our
data across locations.
Univariate Analysis. To determine the number of

metabolites that were affected by different genotypes, we
calculated and compared p values for the relative amounts of
every metabolite from one genotype to those in every other at
every location; in total 2046 statistical comparisons were done.

To minimize the effect of the environment, we compared the
effect of different genotypes using samples grown at the same
location. Parts a and b of Table 4 show the percentage of
metabolites with statistically significant altered levels (p values
< 0.01 after Bonferroni correction) from one genotype to
another using Illinois grain and forage samples, respectively.
Less than 2% of the metabolites were impacted by different
genotypes in grain and forage samples. Similar results were
obtained when we compared the impact of the genotype using
samples from the other five locations (results not shown).
To determine the number of metabolites that were affected

by the environment (location), we calculated and compared
p values for the relative amount of every metabolite from one
location to another for both grain and forage samples. Parts a
and b of Table 5 show the percentage of metabolites with
statistically highly significant altered levels (p values < 0.01 after
Bonferroni correction) between different locations in grain and
forage samples, respectively. From the results, approximately
half of the metabolites were impacted by the environment in
both the grain and forage samples. Forage samples originating
from Kansas presented the highest percentage of metabolites
with altered amounts compared to other locations. For
example, close to 70% of all the metabolites in forage samples
expressed altered levels between Kansas and Ontario, compared
to only 44% between Illinois and Ontario (see part b of Table 5).
Our results show that the environment had the biggest impact
on both the grain and forage metabolomes, with almost 50% of
the detected metabolites differentially expressed at one location
compared to the others. However, less than 2% of the meta-
bolites were altered as a result of different genotypes. Often,
relative amounts of none of the detected metabolites were
altered across genotypes in grain or forage samples (compare
Tables 4 and 5).

Multivariate Analysis: Effect of Environment. To
evaluate the effect of the environment, we visualized the meta-
bolomic profiles of grain and forage samples from all locations
using unsupervised PCA. Figure 1 (panels a and b) shows PCA
score plots of grain and forage samples, respectively. No clear
separation was observed for grain samples across the different
locations (Figure 1a). The reference samples were tightly
clustered right in the middle of the score plot, indicative of low
variance which is consistent to what we observed from our
univariate analysis. This result also indicates that technical
error, if any, is lower than biological variability. However, for
the forage samples, we observed a strong environmental effect.
Forage samples clustered in the PCA score plot based on where
they were grown (Figure 1b). In addition, forage samples from
the same location were more tightly clustered compared to
grain samples. Reference samples from forage were also tightly
clustered in the middle of the score plot, again indicating that
technical error is less than biology-derived error. The first two
principal components accounted for 32% and 35% of the total
variance in grain and forage samples, respectively.
To further evaluate the effect of the environment on the

plant’s metabolome, the same data from grain and forage
samples were also subjected to HCA. Figure 1(panels c and d)
shows heat maps and dendrograms from the grain and forage
data, respectively. HCA allowed for the visualization of sample
similarity across different locations. Grain samples from Kansas,
Minnesota, and Texas clustered together, indicating that their
metabolomes were very similar (Figure 1c). Likewise, grain
samples from Ontario, Nebraska, and Illinois also clustered
together and thus are deemed to possess some group similarity.

Table 3. Mean RSD for Relative Abundance of All
Metabolites in Grain and Forage Samples with Different
Genotypes from All Locations

entry
code samples grain forage

entry
code samples grain forage

1 34 71.68 57.49 26 6 60.07 34.38
2 35 71.64 64.5 27 12 67.89 43.94
3 34 79.62 55.18 28 6 48.74 36.45
4 35 69.18 58.7 29 12 61.97 47.08
5 35 72.41 60.23 30 12 68.31 46.07
6 3 51.02 NA 31 6 53.09 34.17
7 6 51.02 41.55 32 12 63.64 56.8
8 6 70.28 40.38 33 23 69.06 60.23
9 11 58.09 50.87 34 24 63.05 58.81
10 9 61.19 47.86 35 18 68.88 55.3
11 9 59.19 NA 36 18 71.92 50.95
12 8 57.8 34.32 37 5 59.68 31.79
13 4 51.12 33.95 38 18 70.35 51.27
14 11 53.71 44.53 39 12 62.44 61.66
15 6 55.69 41.64 40 6 58.54 29.02
16 12 67.33 51.77 41 12 54.44 52.29
17 6 56.31 32.85 42 6 61.21 45.04
18 12 62.74 47.43 43 12 68.88 59.22
19 23 59.9 53.65 44 6 65.72 32.65
20 23 81.69 47.5 45 6 52.69 48.67
21 12 67.24 44.07 46 6 60.63 34.43
22 5 70.63 46.24 47 6 46.03 46.94
23 6 48.2 40.31 48 6 52.62 51.87
24 29 60.2 59.57 49 6 50.8 51.22
25 30 70.31 65.15 50 6 57.73 30.16
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These relationships are also evident from the corresponding
heat map. It is clear that the concentrations of most of
metabolites in grain from Ontario, Nebraska, and Illinois were
lower compared to those in the samples from Kansas,
Minnesota, and Texas. Forage samples from Kansas and Illinois
clustered together while the samples from the other locations
also clustered together (Figure 1d). From the PCA of forage,
we also saw some separation of Kansas and Illinois samples
from those of the other locations along PC1, which accounted
for 23% of the total variance.
Multivariate Analysis: Effect of Genotypes. To

investigate the effect of genotype, metabolomics data derived
from grain and forage samples collected from each location
were subjected to unsupervised PCA separately to minimize
any environmental effect. Figure 2 (panels a and b) shows PCA
score plots from grain and forage using samples originating

from Illinois. No separation was observed among grain samples
with different genotypes. Grain samples with different
genotypes were mixed and scattered along PC1 and PC2,
which together accounted for about 40% of the total variance.
Similarly, PCA of forage samples did not reveal any differences
based on genotype. Reference samples were clustered together
in the middle of the score plot, as expected. Similarly, we did
not observe any differences between different genotypes using
grain and forage samples from the other five locations (data not
shown).
To further evaluate the effect of the genotype, we subjected

the same grain and forage metabolomics data generated from
the Illinois samples to HCA. Figure 2 (panels c and d) shows
heat maps and dendrograms for grain and forage samples,
respectively. Although PCA could not differentiate one
genotype from any other, HCA allowed us to see how similar

Table 4. Percentage of Metabolites with Relative Abundances that were Statistically Highly Significant (p < 0.01 After
Bonferroni Correction) between Genotypes in (a) Grain and (b) Forage Samples from Illinois

(a)

1 2 3 4 5 19 20 21 23 24 25 26 27 29 30 31 33 34 36 38

1 0

2 0 0

3 0 0 0

4 0 0 0 0

5 0 0.54 0 0 0

19 0 0 0 0 0 0

20 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0 0 0 0

27 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0.54 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 1.62 0 0 0 0 1.08 0 0 0 0 0 0 0 0 0

33 0 0 1.08 0 1.08 0 0.54 0 0 0 1.08 0.54 0 0.54 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0 0.54 0 0 0 0.54 0 0

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b)

1 2 3 4 5 19 20 21 23 24 25 26 27 29 30 31 33 34 36 38

1 0

2 0.54 0

3 0 0 0

4 0 0.54 0 0

5 0.54 0 0 0 0

19 0 0 0 0 0 0

20 0 0.54 0 0 0.54 0 0

21 0.54 0 0 0 0 0 0.54 0

23 0 0 0 0 0 0 0 0 0

24 0 0.54 1.08 0.54 0.54 0 0 1.08 0 0

25 0 0 0 0 0 0 0 0.54 0 0.54 0

26 0 0 0 0 0 0 0 0 0 0 0 0

27 0.54 0 0.54 0 0 0 0 1.62 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 1.62 0.54 0 0.54 0 0.54 0 0 0.54 0.54 0 0 0.54 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0.54 0 0 0

33 1.08 1.62 1.08 0 0.54 0.54 1.62 0 1.08 1.08 0.54 0.54 0.54 0 0 0 0

34 1.08 1.08 0 0 0 0.54 1.08 1.08 0.54 1.08 0.54 1.08 0.54 0 0.54 0 0 0

36 1.08 0.54 0 0 0 0 1.62 0 0.54 0.54 0.54 0 0.54 0 0 0 0 1.08 0

38 0 0 0 0 0 0 0 0 0 0 0 0 0.54 0 0 0 0 0 0 0
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metabolomes were among the genotypes. The metabolomic
profiles of grain and forage samples from different genotypes
did not show any significant differences, as seen in the heat
map. HCA of samples from the remaining five locations (results
not shown) did not reveal any genotype effect. These results
support our conclusion that the environment and not genotype
has the biggest impact on the metabolome of both grain and
forage maize samples.

Effect of Genotype Times Environment Interaction
(G × E). To investigate the genotype and environment inter-
action and understand the contribution of each, we considered
metabolomics data derived from grain and forage samples with
five different genotypes grown at all locations. We first
calculated and compared the mean RSD for all metabolites
for each genotype at every location using grain samples as
shown in Table S4 of the Supporting Information. We then
calculated the average of each of the five genotypes that were
grown in all six locations and subjected the data to HCA. We
reasoned that if the environment had a strong effect, we would
expect to see samples from the same location clustered together

Table 5. Percentage of Metabolites with Relative
Abundances Statistically Highly Significant (p Values < 0.01
after Bonferroni Correction) between Locations in (a) Grain
and (b) Forage Samples

(a)

Illinois Kansas Minnesota Nebraska Ontario Texas

Illinois 0
Kansas 51.92 0
Minnesota 58.33 44.23 0
Nebraska 44.87 63.46 50.64 0
Ontario 55.77 56.41 45.51 46.15 0
Texas 57.05 47.44 45.51 50.00 44.87 0

(b)

Illinois Kansas Minnesota Nebraska Ontario Texas

Illinois 0
Kansas 59.46 0
Minnesota 54.05 65.41 0
Nebraska 44.32 62.16 49.73 0
Ontario 44.86 69.19 50.81 45.41 0
Texas 48.65 55.68 52.97 44.32 47.03 0

Figure 1. PCA score plots showing the effect of location on the metabolome of (a) grain and (b) forage samples. HCA and heat maps showing the
effect of location on the metabolome of (c) grain and (d) forage samples.
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regardless of genotype, and if the genotype had a strong effect,
we would expect samples from the same genetic background to
cluster together regardless of where they were grown. Figure 3
(panels a and b) shows dendrograms from grain and forage
samples, respectively. The HCA of grain samples did not show
any strong clustering of samples based on the where they were
grown or their genotype. However, the HCA of forage samples
revealed a strong environmental effect, especially for samples
from Texas, Illinois, and Kansas. To further investigate the
effect of the environment and genotype, the same data set was
also subjected to unsupervised PCA. Figure S1 (panels a and c)
of the Supporting Information shows the PCA score plot from
the grain and forage sample, respectively, showing the effect of
the environment. The first two principal components explained
only 32% of the total variance in grain compared to 50% in
forage samples. Forage samples from the same location were
tightly clustered compared to grain samples, which is similar to
what we observed using all fifty genotypes. From the PCA score
plot shown in Figure S1 (panels b and d) of the Supporting
Information from grain and forage samples, respectively,
samples with different genotypes sourced from different
locations were mixed together and thus processed metabolomes
not specific to any one location.

To further investigate the effect of the genotype and
environment on the metabolome of grain, samples collected
from different locations were subjected to supervised
PLSDA. The PLSDA score plot generated from the grain
data from six different locations shows samples tightly
clustered based on where they were grown (Figure 4a).
Samples were clustered based on where plants were grown.
Metabolites most responsible for driving the separation
were identified based on the loadings and variable
importance in the projection (VIP) scores. Figure 4b
shows the PLSDA score plots for all genotypes. Similarly,
those metabolites accounting for the separation were
identified based on their loadings and VIP scores. Even
with application of the supervised method, we still
could not distinguish one genotype from another. This
result also shows that the environment and not the
genotype had the strongest effect on grain and forage
metabolome. Table S5a of the Supporting Information
shows the top VIPs with the highest scores based on the
same cutoff for the genotype plotted against those with
the highest scores for the environment. Metabolites along
the y axis were more sensitive to different genotypes, while
those along the x axis were more sensitive to different
environments.

Figure 2. PCA score plots showing the effect of genotype on the metabolome of (a) grain and (b) forage samples from Illinois. HCA and heat maps
showing the effect of genotype on the metabolome of (c) grain and (d) forage samples from Illinois.
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■ DISCUSSION

Various metabolomic studies have reported relative standard
deviation (RSD) as a measure of data variability, reproduci-
bility, and normalization.37,38 In our study, we used RSD as a
means to quantify data quality, variability, and reproducibility
for both the grain and forage, as influenced by different
environments and genotypes. We see more variability in grain
samples compared to forage samples regardless of where the
samples were grown or their genotype. The higher variability of
many metabolites in grain is consistent with previous studies
that have attributed this to the presence of very low abundant

small metabolites (∼2−5% of grain biomass) in grain sam-
ples.26,29 The levels of metabolites present in grain have been
shown to vary widely based on the level of major macro-
molecular nutrients such as starch, protein, fat, and fiber.26,29,39

We also found that the concentrations of most metabolites in
grain were lower compared to those in forage from samples
from the same plant. Furthermore, evaluation of the mean RSD
for metabolites from grain and forage samples obtained from
different blocks or field replicates in every location showed that
our data was very reproducible. We used pooled QC samples to
compare reproducibility within the same batch and the reference
samples to compare the reproducibility across different batches.

Figure 3. HCA on the metabolome of (a) grain and (b) forage samples of five genotypes (1−5) grown at six locations.

Journal of Agricultural and Food Chemistry Article

dx.doi.org/10.1021/jf303873a | J. Agric. Food Chem. 2012, 60, 11498−1150811505



From the results we also obtained very good reproducibility
within and across different batches. This finding also indicated
that our analytical and data processing techniques were stable
over time.
A number of metabolomic or metabolite profiling studies

have been conducted to investigate the effect of genetic
modification and environment on maize grain, but to date there
are no reports that have compared the effect on both the grain

and forage samples using a diverse range of non-GM hybrids.
We have shown that the environment had the highest impact
on the relative amounts of metabolites in both grain and forage.
The results of our study using grain samples are consistent with
previous work. Frank et al. also observed that the environment
has a greater effect on the metabolite profiles than either Bt or
Roundup Ready genetic modifications.22 From our univariate
analysis, results comparing the relative amounts of metabolites

Figure 4. PLSDA score plots of the metabolome of grain samples showing effect of (a) location and (b) genotype.
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from one location to another, about 50% of the metabolites
detected in both the grain and forage samples were affected by
the environment compared to less than 2% of the metabolites
affected by different genotypes. Although we did not compare
our non-GM samples with a GM counterpart, a previous study
revealed that the relative amount of 3 and 4% of the total peaks
detected were different between GM and non-GM maize grown
in Germany and South Africa, respectively.24 There are other
studies that have compared the natural variability of metabolite
in maize grown in different locations and seasons.28 They
showed that the growing season was the most prominent factor
in driving variation of the metabolite pool.
In conclusion, to further understand and validate the natural

metabolome variability coverage contributed by environments
and genotypes, additional analyses should be done on non-GM
crop samples from more geographical locations, multiple years,
and different growing seasons before comparison can be made
between non-GM and GM counterparts. If a substantial equi-
valence assessment of transgenic lines is supplemented using
metabolomics, it is best achieved with multivariate statistics
with a focus on comparing samples (genotypes) of transgenic
lines with their nontransgenic counterparts. It is imperative to
differentiate between environmental and genotypic effects in
respect to any qualitative and quantitative changes of the meta-
bolites. We need to better understand the natural variation
solely contributed by the genetics and if the change is bio-
logically meaningful before metabolomics can be used to
supplement compositional analysis for GM crop assessment.
Metabolomics data sets contain many metabolites or metabolite
signatures, and the assessment of individual metabolites using
univariate analysis can lead to spurious conclusions, especially
in nonvalidated (nonrepeated) experiments. It is for this reason
that metabolomics data are best analyzed with multivariate
statistical tools instead. We contend that if metabolomics is
used to supplement compositional analysis for GM crop assess-
ments by regulatory agencies, such experiments need to be
correctly designed, and a proper data analysis approach needs
to be selected, allowing for an appropriate interpretation of the
results in the context of a safety assessment. Like with any
analytical methodology, sample and technical variability
associated with metabolomics measurements need to be quan-
tified and ideally controlled with appropriate quality control
protocols. This will be the subject of a subsequent study. This
withstanding, before metabolomics or metabolite profiling are
to be used to supplement compositional analysis for safety
assessments of GM crops, it is necessary to understand the
effect of the environment and genetic background with non-
GM crops in order to place metabolomics data in proper
context when applied to GM crops.
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